

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/operating-systems-notes/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/operating-systems-notes/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Distributed Shared Memory

	Must decide placement
	place memory (pages) close to relevant processes

	Must decide migration
	when to copy memory (pages) from remote to local

	Must decide sharing rules
	ensure memory generations are properly ordered

“Peer” Distribution Applications

	Each node
	“owns” state

	provide service

	all nodes are “peers”.

Examples: Big-data analytics, web searches, context sharing or distributed shared memory (DSM)

Distributed Shared Memory (DSM)

DSM is a service that manages memory accross multiple nodes so that applications that are running on top will have an illusion that they are running on a shared memory.

	Each node
	“owns” state => memory

	provide service
	memory read/writes from any nodes

	consistency protocols

	permits scaling beyond single machine memory limits
	more “shared” memory at lower cost

	slower overall memory access

	commodity interconnect technologies support this RDMA(Remote Direct Memory Access)

Hardware vs Software DSM

	Hardware-supported (expensive!)
	relies on interconnect

	OS manages larger physical memory

	NIC(Network Interface Cards) translate remote memory accesses to messages

	NICs involved in all aspects of memory management; support atomics..

	Software supported
	everything done by software

	OS,or language runtime

	Hybrid (Software tasks in Hardware) DSM implementations
	prefetch pages

	address translation (easier done in hardware)

	triggering invalidations (easier done in hardware)

DSM Design : Sharing Granularity

	cache line granularity?
	overheads too high for DSM

	variable granularity [N]

	page granularity [Y] (OS level)

	object granularity [Y] (Language runtime)
	beware of false sharing E.g. x and y shared on same page

What types of applications use DSM?

Application access algorithm

	Single reader/ single writer (SRSW)

	Multiple readers/ single writer (MRSW)

	Multiple reader/ Multiple writers (MRMW)

Performance considerations

	DSM performance metric == access latency

	Achieving low latency through
	Migration
	makes sense for SRSW

	requires data movement

	Replication (caching)
	more general

	requires consistency management

	Hence, migration is okay for SRSW but not for all.

	Caching and Replication
	Copies of data to incerease data access

	for many concurrent writes, overheads too high but stil generally better than Migration

Consistency Management

	In SMP
	write invalidate

	write update

	coherence operations triggered in each write
	overhead too high

	Push invalidations when data is written to
	Proactive

	Eager

	Pessimistic

	Pull modifications information periodically
	on demand (reactive)

	lazy

	optimistic

	when these methods get triggered depends on the consistency model for the shared state

DSM architecture (page-based, OS-supported)

	Page-based DSM architecture
	distributed nodes, each with own local memory contribution

	pool of pages from all nodes

	each page has IO (“home” node), page frame number

	if MRMW
	need local caches for performances (latency)

	“home” or “manager” node drives coherence operations

	all nodes responsible for part if distributed memory (state) management

	Home node
	keeps state: page accessed, modifications, caching enabled/disabled, locked..

	Current owner
	owner may not be equal to home node

	Explicit replicas
	for load balancing, performance, or reliability
home, manager node controls memory

DSM metadata

[image: metadata.png]

Implementing DSMs

	Problem : DSM must intercept access to DSM state
	to send remote messages requesting access

	to trigger coherence messages

	overheads should be avoided for local non-shared state (pages)

	dynamically engage and disengage DSM when necessary

	Solution : Use hardware MMU support!
	trap in OS if mapping invalid or access denied

	remote address mapping -> trap and pass to DSM to send message

	cached content -> trap and pass to DSM to perform memory coherence operations

	other MMU information useful (e.g. Dirty page)

Consistency model

	Agreement between memory (state) and upper software layers

	Memory behaves correctly if and only if software follows specific rules

	Memory (state) guarantees to behave correctly
	access ordering

	propagation/ visibility of updates

Our notation

[image: notation.png]

	R_m1(X) => X was read from memory location m1

	W_m1(Y) => Y was written to memory location m1

Strict Consistency

Strict Consistency => updates visible everywhere immediately

[image: strict.png]

	In practice
	Even on single SMP no guarantees on order without extra locking and synchronization

	in DS, latency and message reorder make this even harder

	Hence almost impossible to guarantee strict consistency

Sequential Consistency

[image: seq.png]

Sequential consistency =>

	memory updates from different processors may be arbitrarily interleaved

	All processes will see the same interleaving

	Operations from the same process always appearin order they were issued

Causal Consistency

[image: causal.png]

	For writes not causally related, “concurrent” writes doesnt gurantee.

	Don’t permit arbitrary ordering from same process writer

Weak Consistency

[image: weak.png]

	Use of synchronization
	Synchronization point => operations that are available (R,W,Sync)

	all updates prior to a sync point will be visible

	no guarantee what happens in between

+ limit data movement of coherence operations

- maintain extra state for additional operations

	Variations:
	Single sync operation (sync)

	Seperate sync per surface of state (page)

	Seperate “entry/acquire” vs “exit/release” operations

 Remote Procedure Calls

Remote Procedure Calls

Example : GetFile App

	Client Server

	Create and init sockets

	Allocate and populate buffers

	Include ‘protocol’ info
	GetFile, size

	Copy data into buffers
	filename, file

	common steps related to remote IPC

Remote Procedure Calls (RPC)

	Intended to simplify the development of cross address space and cross machine interactions

+ Higher-level interface for data movement and communication
+ Error handling
+ Hiding complexities of cross machine interactions

 I/O Management

I/O Management

Operating system

	Has protocols
	Interfaces for device I/O

	Has dedicated handlers
	Device drivers, interrupt handlers

	Decouple I/O details from core processing
	abstract I/O device detail from applications

I/O Device Features

	Control registers (accessed by CPU)
	Command

	Data Transfers

	Status

	Microcontroller : device’s CPU

	On device memory

	Other logic
	e.g. analog to digital

Device drivers

	per each device type

	responsible for device access management and control

	provided by device manufacturers per OS /version

	each OS standardizes interfaces
	device independence

	device diversity

Types of devices

	Block
	e.g. disk

	read/write blocks of data

	direct access to arbitrary block

	Character
	e.g. keyboard

	get/put character

	Network devices

OS representation of a device : special device file

UNIX like systems:

	/dev

	tmpfs

	devfs

Linux supports a number of pseudo “virtual” devices that provide special functionality to a system.

CPU device interactions

[image: iointeractions.png]

access device registers : memory load/store

	Memory mapped I/0
	part of ‘host’ physical memory dedicated for device interactions

	Base Address Registers (BAR)

	I/O Port
	dedicated in low instructions for device access

	target device (I/0 port) and value in register

Path from Device to CPU

	Interrupt
	Overhead: Interrupt handling steps

	+: Can be generated as soon as possible

	Polling
	Overhead: Delay or CPU overhead

	when convenient for OS

Device access : Programmed I/O (PIO)

	No additional hardware support

	CPU “programs” the device
	via command registers

	data movement

	E.g. NIC(Network Interface Card)
	data = network packet

	Write command to request packet information

	Copy packet to data registers

	Repeat until packet sent

E.g. 1500B packet; 8 byte registers or bus => 1(for bus command) + 188(for data) = 189 CPU store instructions

Direct Memory Access (DMA)

	Relies on DMA controller

	CPU “programs” the device
	via command registers

	via DMA controls

	E.g. NIC (data = network packet)

	Write command to request packet information

	Configure DMA controller with in memory address and size of packet buffer

E.g. 1500B packet; 8 byte registers or bus => 1(for bus command) + 1(for DMA configuration) = total 2 CPU store instructions. Less steps, but DMA configuration is more complex.

For DMAs

	data buffer must be in physical memory until transfer completes

	pinning regions (non-swappable)

Typical Device Access

[image: typicaldeviceaccess.png]

	System call

	In-kernel stack

	Driver Invocation

	Device request configuration

	Device performs request

OS bypass

[image: osbypass.png]

	device registers/data
	directly available

	OS configures
	then gets out of the way

	“user level driver”
	in library

	OS retains coarse-grain control

	relies on device features
	sufficient registers

	demux capability

What happens to a calling thread?

[image: access.png]

	Synchronous I/O operations
	process blocks

	Asynchronous I/O operations
	process continues

	Later, process checks and retrieves result

	OR

	process is notified that operation is completed and results are ready

Block Device Stack

Block device typical storage for files:

[image: blockdevicestack.png]

	processes use files => logical storage unit

	kernel file system (KFS)
	where how to find and access file

	OS specifies interface

	generic block layer
	OS standardized block interface

	Device driver

Virtual File System

[image: vfs.png]

Virtual File System Abstractions

	File : Elements on which the VFS operates

	File Descriptor : OS representation of file
	open, read, write, send file , lock, close

	inode : Persistent representation of file “index”
	list of all data blocks

	device, permissions, size

	dentry : Directory entry, corresponding to the single path component,
	dentry cache

	super block : file system specific information regarding the File System layout

VFS on disk

	File : data blocks on disk

	inode : track file blocks
	also resides on disk in some block

	super block : overall map of disk blocks
	inode blocks

	data blocks

	free blocks

Inodes

Index of all disk blocks corresponding to a file

	File : identified by inode

	inode : list of all blocks + other metadata

+: Easy to perform sequential or random access
-: Limit on file size

 Threads and Concurrency

Threads and Concurrency

Thread:

	is an active
	entity executing unit of a process

	works simultaneously with others
	many threads execute together

	requires coordination
	sharing of I/O devices, CPUs, memory

Process vs Thread

[image: processvthread]

Why are threads useful?

	Parallelization => Speedup

	Specialization => Hot cache

	Efficiency => lower memory requirement & cheaper IPC

	Time for context switch in threads is less, since memory is shared, hence mapping is not required between virtual and physical memory.
	Therefore multithreading can be used to hide latency.

	Benefits to both applicatioons and OS code
	Multithreaded OS kernel
	threads working on behalf of applications

	OS level services like daemons and drivers

What do we need to support threads?

	Threads data structure
	Identify threads, keep track of resource usage..

	Mechanisms to create and manage threads

	Mechanisms to safely coordinate among threads running concurrently in the same address space

Concurrency control and Coordination

	Mutual exclusion
	Exclusive access to only one thread at a time

	mutex

	Waiting on other threads
	Specific condition before proceeding

	condition variable

	Waking up other threads from wait state

Threads and Threads creation

	Thread data structure:
	Thread type, Thread ID, PC, SP, registers, stack, attributes.

	Fork(proc, args)
	create a thread

	not UNIX fork

t1 = fork(proc, args)

	Join(thread)
	terminate a thread

child_result = join(t1)

Example:

Thread t1;
Shared_List list;
t1 = fork(safe_insert, 4);
safe_insert(6);
join(t1); //Optional

The list can be accessed by reading shared variable.

Mutual Exclusion

	Mutex data structure:
	locked?, owner, blocked_threads

lock(mutex){
 //Critical Section
 //Only one thread can access at a time
}
unlock(mutex)

[image: mutex]

Producer Consumer problem

What if the processing you wish to perform with mutual exclusion needs to occur under certai conditions?

For e.g. The producer appends items to a list until the list is full, and the consumer has to print out all the items of the list once the list if full and then empty the list. Thus we have to execute the Consumer thread only under a certain condition (here- when the list becomes empty, print items).

Solution: Use Condition Variables

	Wait(mutex, condition)
	mutex is automatically released and reaquired on wait

	The consumer applies Wait until the list is full

	Signal(condition)
	Notify only one thread waiting on condition

	The Producer applies Signal to the Consumer thread when the list is full

	Broadcast(condition)
	Notify all waiting threads

[image: producerconsumer]

Readers / Writer problem

	0 or more readers can access a resource

	0 or 1 writer can write the resource concurrently at the same time

	One solution:
	lock on resource
	good for writer

	too restrictive for readers

	Better solution:

if ((read_count == 0) & (read_count == 0))
 R okay, W okay
if (read_count > 0)
 R okay
if (read_count == 1)
 R not-okay, W not-okay

State of shared resource:

	free : resource_counter = 0

	reading : resource_counter > 0

	writing : resource_counter = -1

Thus essentially we can apply mutex on the new proxy ‘resource_counter’ variable that represents the state of the shared resource.

Avoiding common mistakes

	keep track of mutex/lock variable used with a resource
	e.g. mutex_type m1; // mutex for file1

	check that you are always and correctly using lock and unlock - Compilers can be used as they generate errors/warnings to correct this type of mistake

	Use a single mutex to access a single resource

	check that you are signalling correct condition

	check that you are not using signal when broadcast is needed
	signal : only 1 thread is will proceed, remaining threads will wait

	check thread execution order to be controlled by signals to condition variables

Spurious(Unnecessary) Wake ups

When we wake up threads knowing they may not be able to proceed.

Deadlocks

Two or more competing threads are said to be in a deadlock if they are waiting on each other to complete, but none of them ever do.

[image: deadlock]

Here T1 and T2 are in deadlock.

How to avoid this?

	Unlock T1 before locking T2
	Fine-grained locking but T1 nad T2 may both be required

	Use one mega lock, get all locks upfront, then release at end
	For some applications this may be ok. But generally its too restrictive and limits parallelism

	Maintain lock order
	first m_T1

	then m_T2
	this will prevent cycles in wait graph

A cycle in wait graph is necessary and sufficient for deadlock to occur.
(thread-waiting-on-resource —edge—> thread-owning-resource)

 Synchronization

Synchronization

Waiting for other processes, so that they can continue working together

	may repeatedly check to continue
	sync using spinlocks

	may wait for a signal to continue
	sync using mutexes and condition vatiables

	waiting hurts performance
	CPUs wste cycles for checking; cache effects

Limitation of mutextes and condition variables

	Error prone/correctness/ease of use
	unlock wrong mutex, signal wrong condition variable

	Lack of expressive power
	helper variables for access or priority control

Low-level support: hardware atmoic instructions

Synchronization constructs

	Spinlocks (basic sync construct)
	Spinlock is like a mutex
	mutual exclusion

	lock and unlock(free)

	but, lock == busy => spinning

	Semaphores
	common sync construct in OS kernels

	like a traffic light: Stop and Go

	like mutex, but more general

Semaphore == integer value

	on init
	assigned a max value (positive int) => max count

	on try(wait)
	if non-zero, decrement and proceed => counting semaphore

	if initialized with 1
	semaphore == mutex(binary semaphore)

	on exit(post)
	increment

Syncing different types of accesses

Reader/Writer locks

	read (don't modify)
	write (always modify)

	shared access
	exclusive access

	RW locks
	specify type of access, then lock behaves accordingly

Monitors (highlevel construct)

	shared resource

	entry resource

	possible condition variables

	On entry:
	lock, check

	On exit:
	unlock, check, signal

More synchroniaztion constructs

	serializers

	path expressions

	barriers

	rendezvous points

	optimistic wait-free sync (RCU) [Read Copy Update]

All need hardware support.

Need for hardware support

	Problem
	concurrent check/update on different CPUs can overlap

Atomic instructions

Critical section with hardware supported synchronization

Hardware specific

	test-and-set
	returns(tests) original values and sets new-value!= 1 (busy) automatically

	first thread: test-and-set(lock) => 0 : free

	next ones: test-and-set(lock) => 1 busy
	reset lock to 1, but that’s okay

	+ : Latency

	+ : minimal (Atomic)

	+ : Delay potentially min

	- : Contention processors go to memory on each spin
- To reduce contention, introduce delay
- Static(based on a fixed value) or Dynamic(backoff based, random delay)

	read-and-increment

	compare-and-swap

Guarantees

	atomicity

	mutual exclusion

	queue all concurrent instructions but one

Shared Memory Multiprocessors

Also called symmetric multiprocessors (SMP)

[image: sharedmmmp]

	Caches
	hide memory latency, “memory” further away due to contention

	no-write, write-through, write-back

Cache Coherence

[image: cachecoherence]

[image: cachecoherence2]

 Distributed File Systems

Distributed File Systems

	Accessed via well defined interface
	access via Virtual File Systems

	Focus on consistent state
	tracking state, file update, cache coherence

	Mixed distribution models possible
	replicates vs partitioned, peer-like systems

DFS models

	Client Server on different machines

	File server distributed on multiple machines
	replicated (each server : all files)

	partitioned (each server : parts of files)

	both (files partitioned, each partition replicates)

	Files stored on and served from all machines (peers)
	blurred distinction between clients and servers

Remote File Service : Extremes

[image: extremes]

[image: extremes2]

	Extreme1 : Upload/Download
	like FTP, SVN

	+ local read/writes at client

	- entire file download/upload evn for small accesses

	- server gives up contro;

	Extreme2 : True Remote File Access
	Every access to remote file, nothing done locally

	+ file access centralized, easy to reason about consistency

	- every file operation pays network cost, limits server scalablity

Remote File Service : A compromise

A more practical Remote File access (with Caching)

	Allow clients to store parts of files locally (blocks)
	+ low latency on file operations

	+ server load reduces => more scalable

	Force clients to interact with server (frequently)
	+ server has insights into what clients are doing

	+ server has control into which accesses can be permitted => easier to maintain consistency

	- server more complex, requires different file sharing semantics

Stateless vs Stateful File server

Stateless | Stateful
———-|———-
Keeps no state; Okay with extreme models, but can’t support ‘practical’ model|Keeps client state needed for ‘practical’ model to track what is cached/accessed
- Can’t support caching and consistency management|+ Can support locking, caching, incremental operations
- Every request self-contained. => more bits transferred|- Overheads to maintain state and consistency. Depends on caching mechanism and consistency protocol.
+ No resources are used on server side (CPU, MM). On failure just restart|- On failure, need checkpoining and recovery mechanisms

Caching state in a DFS

	Locally clients maintain portion of state (e.g. file blocks)

	Locally clients perform operations on cached state (e.g. open/read/write)

	requires coherent mechanisms

[image: cachingstate.png]

System	How	When
—	—-	—-
SMP	Write-update/Write-invalidate	On write
DFS	Client/Server-driven	On demand, periodically, on open..

	Files or File blocks can be (with 1 server and multiple clients) cached in:
	in client memory

	on client storage device (HDD/SDD)

	in buffer cache in memory on server
	(usefulness will depend on client load, request interleaving)

	File Sharing Semantics in DFS

	Session semantics (between open-close => Session)
	write-back on close(), update on open()

	easy to reason, but may be insufficient

	Periodic updates
	client writes-back periodically
	clients have a “lease” on cached data (not exclusively necessary)

	servers invalidates periodically => provides biunds on “inconsistency”

	augment with flush()/sync() API

	Immutable files => never modify, new files created

	Transactions => all changes atomic

Replication vs Partitioning

	
	Replication
	Partitioning

	
	Each machine holds all files
	Each machine has subset of files

	Advantages
	Load balancing, availibility, fault tolerance
	Availibility vs single server DFS;Scalability with file system size;single file writes simpler

 Scheduling

Scheduling

Operating System perform scheduling in the following simple ways:

	Dispatch orders immediately
	scheduling is simple FIFO (First-Come-First-Serve)

	Dispatch simple orders first
	maximize number of orders processed over time

	maximize throughput (SJF)

	Dispatch complex orders first
	maximize utilization of CPU, devices, memory

CPU Scheduler

	Decides how and when process (and their threads) access shared CPUs

	Schedules tasks running at user level processes/threads as well as kernel level threads

	Chooses one of the ready tasks to run on CPU

	Runs when
	CPU becomes idle

	new task becomes ready

	timeslice expired timeout

Context switch, enter user mode, set PC and go! <= Thread is dispatched on CPU.

	Which task should be selected?
	Scheduling policy/algorithm

	How is this done?
	Depends on runqueue data structure

“Run-to-completion” Scheduling

	Initial assumptions
	group of tasks/jobs

	known execution time

	no preemption

	single CPU

	Metrics
	throughput

	average job completion time

	average job wait time

	CPU utilization

Scheduling algorithms:

1. First Come First Serve (FCFS)

	Schedules tasks in order of arrival

runqueue = queue(FIFO)

If T1, T2, T3 arrive in the given order and T1 has execution time 1s, T2 10s and T3 1s then :

	Throughput = 3/(1+10+1) = 3/12 = 0.25s

	Average completion time = (1 + 11 + 12)/3 = 8s

	Average wait time = (1+1+11)/3 = 4s

2. Shortest Job First (SJF)

	Schedules tasks in order of execution time

	Therefore for the above example, T1(1s) > T3(1s) > T2(10s)

runqueue = ordered(queue)

//or

runqueue = tree()

For SJF,

	Throughput = 3/(1+10+1) = 3/12 = 0.25s

	Average completion time = (1 + 2 + 12)/3 = 5s

	Average wait time = (0+1+2)/3 = 1s

Preemptive Scheduling

	SJF + Preemption

T2 arrives first.

[image: preemptive]

Priority Scheduling

	Tasks have different priority levels

	Run highest priority task next (preemption)

[image: priority]

runqueue = per priority_queue()

//or

runqueue = tree() ordered on priority

	low priority task stuck in runqueue => starvation

	“priority aging”
	priority = f(actual priority, time spent in runqueue)

	eventually tasks will run

	prevents starvation

3. Round-Robin Scheduling

	Pick up the first task from queue (like FCFS)

	Task may yield to wait on I/O (unlike FCFCS)

[image: rr1]

[image: rr2]

[image: rr3]

Timeslicing

	Timeslice = max amount of uninterrupted time given to a task

	task may run less than timeslice
	has to wait on I/O sync
	will be placed on queue

	higher priority task becomes runnable

	using timeslice tasks are interleaved
	timesharing the CPU

	CPU bound tasks => preemption after timeslice

[image: rr4]

Advantages

 Memory Management

Memory Management

Operating systems:

	uses intelligently size containers
	memory pages of segments

	Not all parts are needed at once
	tasks operate on subset of memory

	Optimized for performance
	reduce time to access state in memory
	leads to better performance!

Memory Management Goals

[image: mmgoals.png]

Virtual vs Physical memory

	Allocate
	allocation, replacement

	Arbitrate
	address translation and validation

Page-based Memory Management

	Allocate => pages => page frames

	Arbitrate => page tables

Segment-based Memory Management

	Allocate => segments

	Arbitrate => segment registers

Hardware Support

[image: hardwaresupport.png]

Memory Management Unit (MMU)

	translate virtual to physical address

	reports faults (illegal access, permission, not present in memory)

Registers

	pointers to page tables

	base and limit size, number of segments

Cache

	Translation lookaside buffer

	Valid VA-PA translations using TLB

Translation

	Actual PA generation done in hardware

Page Tables

[image: pagetables.png]

	OS creates page table per process

	On context switch, switch to valid page table

	Updates register that points to correct page table.
E.g CR3 on x86 architecture

Page Table Entry (PTE)

[image: pfn.png]

Flags

	Present (valid/invalid)

	Dirty (written to)

	Accessed (for read or write)

	Protection bits => RWX

Page Table Entry on x86

[image: pfnx86.png]

Flags

	Present

	Dirty

	Accessed

	R/W permission bit 0: R only, 1: R/W

	U/S permission bit 0: usermode, 1: superviser mode only

	others: caching related info (write through, caching disabled)

	unused: for future use

Page faults

[image: pagefaults.png]

Page Table Size

[image: pts.png]

	32 bit architecture
	Page Table Entry (PTE) = 4 Bytes, including PFN + flags

	Virtual Page Number (VPN) = 2^32/page_size

	Page size = 4KB (...8KB, 2MB, 4MB, 1GB)

Therefore Page Table Size = (2^32 * 2^12)*4B = 4MB (per process)

	for 64 bit architecture
	Page Table Entry (PTE) = 8 Bytes

	Page size = 4KB

Page Table Size = (2^64 * 2^12)*8B = 32PB (per process!)

	processes don’t use entire address space

	even on 32 bit architecture, it will not always use all 4GB

But Page Table assumes an entry per VPN regardless, of whether corresponding virtual memory is needed or not.

Hierarchical Page Tables

[image: hierarchicalpt.png]

On malloc, a new internal page table may be allocated.

Address split:

 	Page Number
 	offset

 	P1
 	P2
 	d

 	12
 	10
 	10

	inner table addresses => 2^10 * page_size = 2^10*2^10 = 1MB

	don’t need an inner table for each 1MB virtual memory gap

Additional Layers

	page table directory pointer (3rd level)

	page table directory map (4th level)

	Important on 64 bit architectures

	larger and more sparse => larger gaps would save more internal page table components

[image: hierarchicalpt2.png]

Tradeoffs of Multilevel Page Tables

Advantages

 Operating Systems Overview

Operating Systems Overview

Operating Systems :

	Direct operational resources [CPU, memory, devices]

	Enforces working policies [Resource usage, access]

	Mitigates difficulty of complex tasks [abstract hardware details (using system calls)]

What is an Operating System?

	Intermediate between Hardware and Software applications

	Hides hardware complexity (Read/write file storage, send/receive socket network)

	Handles resource management (CPU scheduling, Memory management)

	Provide isolation and protection (allocate different parts of memory to different applications so that applications don’t overwrite other memory locations)

Operating System definition:

An Operating System is a layer of systems software that:

	directly has privileged access to the underlying hardware;

	hides the hardware complexity;

	manages hardware on behalf of one or more application according to some predifined policies.

	In addition, it ensures that applications are isolated and protected from one another.

Operating System examples:

Desktop|Embedded devices
———–|————
Microsoft Windows | Android OS
MAC OS X (BSD) | iOS
LINUX | Symbian
...|...

OS Elements

	Abstractions (corresponds to applications that OS executes)
	process, thread, file, socket, memory page

	Mechanisms (on top of Abstractions)
	create, schedule, open, write, allocate

	Policies (how mechanisms are used to manage underlying hardware)
	Least Recently Used (LRU) , Earliest Deadline First (EDF), etc.

Example :

Memory Management:

	Abstractions: Memory page

	Mechanisms: Allocate, map to a process

	Policies: LRU

OS Design Principles

	Seperation of mechanism and policy
	implement flexible mechanisms to support many policies

	e.g. LRU, LFU, random

	Optimize for common case
	Where will the OS be used?

	What will the user want to execute on that machine?

	What are the workload requirements?

User/ Kernel Protection Boundary

	user-level => applications [underprivileged mode]

	kernel-level => OS Kernel [privileged access, hardware access]

[image: userkernelprotectionboundary]

	User-Kernel switch is supported by hardware.
	using trap instructions

	system calls like:
	open (file)

	send (socket)

	malloc (memory)

	signals

System call Flowcart

[image: systemcallflowchart]

	To make a system call, an application must:
	write arguments

	save relevant data ast well defined location

	make system calls using system call number

	In synchronous mode : wait until system call completes.

Basic OS services

	process management

	file management

	device management

	memory management

	storage management

	security

Linux System Calls

Task|Commands
———— | ————
Process Control | fork (); exit(); wait();
File Manipulation | open(); read(); write();
Device Manipulation | ioctl(); read(); write();
Information Maintenance | getpid(); alarm(); sleep();
Communication | pipe(); shmget(); mmap();
Protection | chmod(); umask(); chown();

Linux Architecture

[image: linuxarchitecture]

 Process and Process Management

Process and Process Management

Process: Instance of an executing program.

	S